

University Of Basrah COLLEGE OF ENGINEERING MECHANICAL ENGINEERING DEPARTMENT

THREE-DIMENSIONAL FORCE SYSTEMS

Many problems in mechanics require analysis in three dimensions , and for such problems it is often necessary to resolve a force into its three mutually perpendicular components. The force **F** acting at point *O* in Fig. 2/16 has the *rectangular components* F_x , F_y , F_z , where

(2/11)

 $F_{x} = F\cos\theta_{x}$ $F_{y} = F\cos\theta_{y}$ $F_{z} = F\cos\theta_{z}$ $F = \sqrt{F_{x}^{2} + F_{y}^{2} + F_{z}^{2}}$ $F = F_{x}i + F_{y}j + F_{z}k$ $F = F(i\cos\theta_{x} + j\cos\theta_{y} + k\cos\theta_{z}),$

Figure 2/16

The unit vectors **i**, **j**, and **k** are in the *x*-, *y*-, and *z*-directions, respectively. Using the direction cosines of **F**, which are

 $l = \cos \theta_x$, $m = \cos \theta_y$, and $n = \cos \theta_z$, where $l^2 + m^2 + n^2 + = 1$, we may write the force as

 $\mathbf{F} = F(l\mathbf{i} + m\mathbf{j} + n\mathbf{k})$

We may regard the right-side expression of Eq. 2/12 as the force magnitude *F* times a unit vector \mathbf{n}_F which characterizes the direction of **F**, or

$$\mathbf{F} = F \boldsymbol{n}_F$$

It is clear from Eqs. 2/12 and 2/12*a* that $\mathbf{n}_F = l\mathbf{i} + m\mathbf{j} + n\mathbf{k}$, which shows that the scalar components of the unit vector \mathbf{n}_F are the direction cosines of the line of action of \mathbf{F} . In solving three-dimensional problems, one must usually find the *x*, *y*, and *z* scalar components of *a* force. In most cases, the direction of *a* force is described (*a*) by two points on the line of action of the force or (*b*) by two angles which orient the line of action.

(a) <u>Specification by two points on the line of action of the force.</u>

$$\mathbf{F} = F \mathbf{n}_F = F \frac{\overline{AB}}{AB} = F \frac{(x_2 - x_1)\mathbf{i} + (y_2 - y_1)\mathbf{j} + (z_2 - z_1)\mathbf{k}}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}}$$

Figure 2/17

BY Assist. Professor DR ABDUL KAREEM F. HASSAN 44

University Of Basrah COLLEGE OF ENGINEERING MECHANICAL ENGINEERING DEPARTMENT

(b) Specification by two angles which orient the line of action of the force

Consider the geometry of Fig. 2/18. We assume that the angles *and are known. First resolve* **F** *into horizontal and vertical* components.

 $F_{xy} = F \cos \emptyset$ $F_z = F \sin \emptyset$

Then resolve the horizontal component F_{xy} into x- and y-components.

$$F_x = F_{xy} \cos\theta$$
 $F_y = F_{xy} \sin\theta$

Dot Product

The dot product of two vectors **P** and **Q**, Fig. 2/19*a*, is defined as the product of their magnitudes times the cosine of the angle between them. It is written as $\mathbf{P} \cdot \mathbf{Q} = PQ \cos \alpha$

We can view this product either as the orthogonal projection $P \cos \alpha$ of **P** in the direction of **Q** multiplied by **Q**, or as the orthogonal projection $Q \cos \alpha$ of **Q** in the direction of **P** multiplied by **P**. In either case the dot product of the two vectors is a scalar quantity. Thus, for instance, we can express the scalar component $F_x = F \cos \theta_x$ of the force **F** in Fig.2/16 as $F_x = \mathbf{F} \cdot \mathbf{i}$, where **i** is the unit vector in the *x*-direction.

the angle $F_{igure 2/18}$ $F_{n} = F \cdot n^{n}$ (a) $F_{n} = F \cdot n^{n}$ $F_{n} = F \cdot n^{n}$ $F_{igure 2/19}$ (b)

In more general terms, if **n** is a unit vector in a specified direction, the projection of **F** in the **n**-direction, Fig. 2/19*b*, has the magnitude $F_n = \mathbf{F} \cdot \mathbf{n}$. If we want to express the projection in the **n**-direction as a vector quantity, then we multiply its scalar component, expressed by $\mathbf{F} \cdot \mathbf{n}$, by the unit vector **n** to give $\mathbf{F}_n = \mathbf{F}(\mathbf{F} \cdot \mathbf{n})\mathbf{n}$. We may write this as $\mathbf{F}_n = \mathbf{F} \cdot \mathbf{n}$ without ambiguity because the term **nn** is not defined, and so the complete expression cannot be misinterpreted as $\mathbf{F} \cdot \mathbf{nn}$. If the direction cosines of **n** are α, β , and γ , then we may write **n** in vector component form like any other vector as $\mathbf{n} = \alpha \mathbf{i} + \beta \mathbf{j} + \gamma \mathbf{k}$

where in this case its magnitude is unity. If the direction cosines of **F** with respect to reference axes *x*-*y*-*z* are *l*, *m*, and *n*, then the projection of **F** in the **n**-direction becomes

because

$$F_n = \mathbf{F} \cdot \mathbf{n} = F(\mathbf{i} + m\mathbf{j} + n\mathbf{k}) \cdot (\alpha \mathbf{i} + \beta \mathbf{j} + \gamma \mathbf{k}) = F(\mathbf{i}\alpha + \beta m + \gamma n)$$

$$\mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = \mathbf{k} \cdot \mathbf{k} = 1 \quad and \quad \mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{i} = \mathbf{i} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{j} = 0$$

The latter two sets of equations are true because **i**, **j**, and **k** have unit length and are mutually perpendicular.